Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures

نویسندگان

  • Reza Zamiri
  • Hossein Abbastabar Ahangar
  • Ajay Kaushal
  • Azmi Zakaria
  • Golnoosh Zamiri
  • David Tobaldi
  • J. M. F. Ferreira
چکیده

A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution. The average crystalline domain diameter was found to be 5.2 nm, with a very narrow size distribution. UV-visible absorbance spectrum was used to calculate the optical energy band gap of the prepared CeO2 nanoparticles. The FT-IR spectrum of prepared CeO2 nanoparticles showed absorption bands at 400 cm(-1) to 450 cm(-1) regime, which correspond to CeO2 stretching vibration. The dielectric constant (εr) and dielectric loss (tan δ) values of sintered CeO2 compact consolidated from prepared nanoparticles were measured at different temperatures in the range from 298 K (room temperature) to 623 K, and at different frequencies from 1 kHz to 1 MHz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures

Copyright: © 2015 Zamiri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

متن کامل

Experimental measurement of dynamic viscosity of CeO2-EG at different concentrations and temperatures and proposing a new correlation

Nanofluid is prepared through the nanoscale particles suspended in a fluid base and Nanotechnology is a new attempt to investigate the thermal sciences. As a result of huge investment in developed countries on nanotechnology, research on thermal properties of nano-fluids is of particular interest.Due to the usage of nanotechnology to reduce energy waste, in this project CeO2 with EG is used to ...

متن کامل

Experimental Measurement of Dynamic Viscosity of CeO2-EG at Different Concentrations and Temperatures and Proposing a New Correlation

Nanofluid is made through the nanoscale particles suspended in a fluid base and Nanotechnology is a new attempt in thermal science investigations. As a result of huge investment in developed countries on nanotechnology, research on thermal properties of nano-fluids is of particular interest. Due to the usage of nanotechnology to reduce energy consumptions, in this project CeO2 with EG is used t...

متن کامل

Exploring the cytotoxicity of CeO2 nanoparticles: A compendious approach

Metal oxide nanoparticles due to their antioxidant properties have attractedsignificant attention and exhibited good potential for use in cancer theranostics.Owing to the poor absorption in the physiological environment, they are anideal candidate to act as nanocarriers in targeted drug delivery and bioimaging.This feature can be successfully implemented in live monitori...

متن کامل

Embedding Ultrafine and High‐Content Pt Nanoparticles at Ceria Surface for Enhanced Thermal Stability

Ultrafine Pt nanoparticles loaded on ceria (CeO2) are promising nanostructured catalysts for many important reactions. However, such catalysts often suffer from thermal instability due to coarsening of Pt nanoparticles at elevated temperatures, especially for those with high Pt loading, which leads to severe deterioration of catalytic performances. Here, a facile strategy is developed to improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015